
Agents and artefacts for multiple models co-evolution

Building complex system simulation as a set of interacting models

Julien Siebert
INRIA, Centre Nancy Grand

Est
julien.siebert@loria.fr

Laurent Ciarletta
Ecole National Supérieure des

Mines de Nancy
laurent.ciarletta@loria.fr

Vincent Chevrier
Nancy Universtity (UHP)

vincent.chevrier@loria.fr

LORIA - Campus Scientifique - BP 239 - 54506 Vandoeuvre-lès-Nancy, France

ABSTRACT
Complex systems simulations generally involve the interac-
tion of different scientific fields. Human economies, ecosys-
tems or dynamic computer networks such as P2P are good
examples. Since models and simulators already exist in
those fields, designing the simulation as a society of interact-
ing and co-evolving models appears attractive. Beyond the
technical issues to make different simulators cooperate, the
challenges are to make the co-evolution design and imple-
mentation easier for the scientist that rarely know intricate
modelling and simulation tools, and to facilitate the collab-
oration of different experts. Agents and artefacts (A&A)
paradigm simplifies the design and the implementation of a
society of interacting and co-evolving models. That is, the
addition, the removal or the interchange of models require
less effort. Contrary to classical approaches, we have built
a decentralized co-evolution architecture based upon A&A
and a data-driven coordination model. In this article, be-
yond the architecture presentation, we focus on the benefit
provided by A&A used for multiple models co-evolution.

Categories and Subject Descriptors
I.6.5 [Simulation and Modelling]: Model Development

General Terms
Design

Keywords
Simulation techniques, tools and environments, Software en-
gineering, Complex systems

1. INTRODUCTION
Modelling and Simulation (M&S) techniques and software

engineering have always been in touch with each other. In
[4] the authors declare that [...] the real limits on the future
adoption of simulation may rest on our ability to represent
complex systems and to do it easily, which can be constructed
as a matter of modelling style. [...] Thus the distinction in

Cite as: Agents and artefacts for multiple models co-evolution. Building
complex system simulation as a set of interacting models., Julien Siebert,
Laurent Ciarletta, Vincent Chevrier, Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010),
van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14,
2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

programming style is not what can and can’t be done but
what can be done easily.

A complex system is composed of a set of interacting parts
that as a whole exhibits properties that cannot be predicted
from the simple sum of the individual parts properties. Hu-
man economies, social structures, climate or ecosystems are
good examples of complex systems. Equation based mod-
elling cannot represent interactions among components and
their impact on the global system behaviour. Multiagent
approach offers an interesting alternative [17].

Complex systems modelling also involves the interaction
of different scientific domains or different abstraction levels.
This is the case in biology, for example, where models from
chemistry and biology (organ, tissues) may be needed [15] or
in dynamic networks with models from sociology and com-
puter networks [12]. This way, different specialists work on
the same simulation. Each one brings its own models and
simulators.

The challenge is then to allow those scientists to build a
complex simulation from their own building blocks. More-
over, we should keep in mind that they are probably not
familiar with the intricate modelling and simulation tools
and theories. One way to facilitate the interaction of het-
erogeneous models is to build the simulation as a society of
interacting models. Models should be seen as component
we can weave together (as in component-based software en-
gineering).

Some work has already been done in this way. The high
level architecture (HLA) [5] is a standard that proposes to
use a central infrastructure in order to make models inter-
act. VLE [6] and JAMES II [3] are both modelling and
simulation frameworks that allow to couple different mod-
els (issued from different formalisms). Agents and artefacts
(A&A) paradigm [8] has been used in order to build a com-
plex systems simulation as a society of interacting and co-
evolving models [1].

In this paper we propose modelling engineering concepts
to simplify the design of distributed and decentralized com-
plex systems simulations. To do this, we use the perspective
of A&A. However, contrary to approaches such as HLA or
A&A used in [1], we do not rely on a global scheduler in
order to synchronize the different interacting models. In-
stead, we propose a data-driven coordination model that
allows a decentralized synchronization [13]. On the other
hand, contrary to approaches such as VLE [6] and JAMES
II [3] that imposes to build models directly in the modelling
framework, we concentrate on reusing existing models and
simulators and making them interact. Since our work fo-

509

509-516



cuses on model coupling level, innovations from the parallel
and distributed computation domain may of course be used
to implement our approach.

The outline is the following: in section 2, we present the
challenges related to the coupling and the coordination of
different simulators. In section 3, we propose a coordination
model and an architecture based upon A&A. In section 4, we
developed a proof of concepts. We use our concepts to make
some existing Netlogo models interact. Finally, discuss the
advantages and the limits of such an approach.

2. CHALLENGES AND RELATED WORKS

2.1 A modular approach
When we talk about complex systems, we usually think of

decentralized, open and large scale systems. It is generally
accepted that there is no central point of control. Actually,
global properties emerge from the interaction of subsystems
(or entities). Moreover, entities can enter and leave the sys-
tem and their number is admitted to be large. A good ex-
ample is P2P networks, in which there is no central point
of control, people can connect and disconnect themselves on
the fly and the size of these networks have reached several
million users.

However, complexity occurs through the interaction of dif-
ferent abstraction levels. For example, prediction of P2P
networks performances are difficult because it involves the
interaction of socio-economic parameters (users willingness
to share and to download data) and network parameters
(bandwidth, download time). Models exist in both human-
ities and computer network sciences. Moreover, modelling
a system as a set of interacting subsystems is simpler and
requires a collaborating team of experts. Thus, it appears
that, in order to predict the behaviour of a complex system
such as P2P networks, it is necessary to couple heteroge-
neous models [12]. It may also be necessary to interchange
a model by another one in order to compare simulation re-
sults. In the same way, a new instance of a model may be
added in order to scale up the simulation.

We think that, in order to build a complex system simu-
lation from heterogeneous models, specialists from the dif-
ferent concerned fields should be able to, firstly, reuse the
existing models and simulators they develop with as little
modifications as possible and, secondly, easily add, remove
or interchange the models.

Existing modelling and simulation frameworks (such as
JAMES II [3] or VLE [6]) imposes that every specialist in-
volved in the simulation should know the framework and
modify its own models in order to include them. Conversely,
we think that models should be seen as component we can
weave together (as in component-based software engineer-
ing). The challenge is then to modify as little as possible
the existing models, to make them interact in such a way
that it is transparent for the people involved in the simula-
tion design.

In order to build concepts generic enough, we make several
assumptions. Models are black boxes with input and output
ports (as in [19], see figure 1) and there exist simulators
functions that give us the current and the next simulation
time (see section 2.3).

Figure 1: Examples of different kinds of models cou-
pling

2.2 Exchanging data between simulators
When we couple different models the first thing to do is

to represent the data flow between each model (as in fig-
ure 1). Since these models represent several dynamics at
different scales and have been implemented independently,
each model has its own representation of time and data. In
the same way, each simulator proceeds its own execution.
Coherence and compatibility issues appear when coupling
different models and simulators. The next sections present
the related challenges and issues.

2.2.1 Coherence
Scales or dimensions in which a piece of data is represented

could be different from a model to another. Moreover the
representation can be discrete or continuous. For example,
a position pos1 = < x, y, z > (with x, y and z expressed
in meters) in a first model can be represented only in two
dimensions in a second one: pos2 = < x, y > (with x
and y expressed in kilometers). A solution proposed in [1]
is to define operations (projection, discretization, reduction)
in order to achieve this coherence.

The same way, each model could have its own time repre-
sentation. For synchronization purpose, we need to be sure,
for example, that a time value t1 ∈ R

+ in a first model
correspond to a time value t2 ∈ N in a second one. We pro-
pose to express an operation that makes the correspondence
between both time values.

2.2.2 Compatibility
Each simulator could implement a single piece of data in

its own way (integer, float, etc.) or some simulators may not
implement all aspects of a given model. These challenges are
discussed in [9]. A solution is to add an entity (a program)
between the simulators. Its role is to translate the data in
order to respect the compatibility between simulation tools.

2.2.3 Synthesis
Coupling different models and simulators implies to deal

with coherence and compatibilities issues that are neither
models, nor simulators purpose. Since we try to modify as
least as possible the existing models, a solution that appears
is to design of a new entity in charge of these issues (see
figure 2). This is what is proposed in [1], where an artefact
[8] is define in order to deal with these issues.

510



Figure 2: Using an artefact to deal with coupling
issues. A coupling-artefact is needed for each link
between two models

2.3 Coordination in co-evolution
The goal of time management in co-evolution is to ensure

that simulation events (or steps) are executed in the correct
order (local causality constraint [2]). Two main approaches
have been proposed to coordinate interacting simulators: op-
timistic and conservative [2]. We assume that the existing
simulators we reuse have been developed independently and
where not thought for distributed simulations. So they do
not have a roll-back capability (see optimistic approach):
they cannot go back into the simulation process in order to
take new input events into consideration. As a consequence,
we focus on the conservative mode. In the latter, the co-
ordination model has to determine when a simulation event
(or step) is safe to process.

Definition 2.3.1. For a model Mi, a simulation event
(or step) associated with the current simulation time cti is
said to be safe to process if all the input events received af-
ter this event execution are timestamped with a time value
greater than cti.

For example, in the figure 2, suppose the model M1 is at
simulation time ct1 = 8. Its next event to process ne1 is at
time nt1 = 12. This event ne1 is said to be safe if no other
event will be send to M1 with a timestamp lesser than 12.
In our example, M1 has to know if M3 will send events with
timestamps ∈ [8, 12[. If not, ne1 is safe and M1 can process
it. This way, simulators stay synchronized and the causality
constraint is satisfied.

Conservative coordination can be done by using a central
and global scheduler that synchronizes all the simulators as
in [1, 9, 5]. In these solutions, models and simulators need
substantial modifications in order to be controlled by the
scheduler. This prevents to easily reuse the existing M&S
tools. In section 3, we remove this central scheduler and we
propose a novel decentralized coordination.

3. PROPOSITION
We present the concepts used in order to build complex

simulation as a society of interacting models. We do not tar-
get on-line nor real time simulations, which directly interact
with the reality.

3.1 Goals
We use the A&A paradigm [8] to facilitate the design and

the implementation of a society of co-evolving models. Our

approach is intended to make the design and the implemen-
tation of such simulations transparent. This way the spe-
cialists involved in the simulation do not care about coordi-
nation issues and only focus on the modelling aspects. The
architecture we propose is modular and decentralized. It re-
quires as little modifications as possible to integrate existing
models and simulators. More important, these modifications
are done once for all. Thus, to design a simulation of het-
erogeneous models becomes a building block game.

We propose to use objective coordination. That is, coor-
dination does not rely on a single entity but is provided by
the surrounding environment. This method is well known in
the field of situated multiagent systems [16, 10] (stigmergy)
or in parallel systems [11] (shared memory). This provides
a way to loosely couple and to coordinate the interacting
processes. In our case, the simulators interact through the
set of data they exchange. Thus, their surrounding environ-
ment is composed of the coupling-artefacts between them
and the set of exchanged data.

3.2 Validity interval and coordination
Our coordination model principle is the following, each

model Mi holds a current simulation time value cti and
knows the simulation time value for the next event (or next
step) to be processed nti. That is, when a model Mi is ex-
ecuted, it produces data δi at time cti. These data δi will
not change until the next time nti when the model Mi will
be executed. As a result, we can say that δi are valid for
the simulation time interval Γi = [cti, nti[.

A simulator can execute a model if the simulation event to
process is safe (see definition 2.3.1). Then, the issue for the
simulator is to know when an event is safe. It can be solve if
the simulators exchange both the data and the correspond-
ing validity interval: < δj ; Γj >. Indeed, a simulation event
is safe to process if cti ∈ Γj for all the input data (i �= j).

Coordination is neither the simulator, nor the model pur-
pose. It is the environment role. In our case, the coupling-
artefacts besides being in charge of coupling issues (see sec-
tion 2), are also in charge of coordination. That is, when
data are transmitted through the coupling-artefact, the lat-
ter saves them (as a shared memory), then, when a model
Mi needs input data for the time cti, it asks the coupling-
artefact for safe data (i.e. data < δj ; Γj > that fulfills the
condition cti ∈ Γj (with i �= j)). This way, models can inter-
act and coordinate themselves in a loosely and decentralized
way.

We have developed a formal version [14] of this coordi-
nation model and we have proved that coordination occurs
between models and that the system is alive and deadlock
free with k models (k ∈ N).

3.3 Architecture overview
Our architecture is intended to make the design and the

implementation of a simulation of heterogeneous models
transparent, modular and decentralized. In this section, we
presents the concepts from A&A we use.

The coupling-artefacts are in charge of the coordination
and the coupling aspects. The main contribution of our work
is that data exchanges and coordination happen through the
simulators environment (the coupling-artefacts) so the mod-
els execution can be decentralized. We previously define one
coupling-artefact for each link between models (see figure 2).
Data exchanged between two models flow through a coupling

511



Artefact Functions Role

Model-
Artefact

init() Initialize Mi

run()
Run one simulation event,
step or time interval

getOutputData() Return output δi from Mi

setInputData() Send input δj data to Mi

getCurrentTime() Return cti
getNextTime() Return nti
stop() Manage the end of the simu-

lation (storing data, etc.)

Coupling-
Artefact

post() Post < δi, Γi >

read()
Return a safe data
< δi, Γi >

Table 1: Artefacts functions summary

artefact (see figure 3).
We use two other kinds of entities to deal with separation

of concerns. To format data (i.e to associate δi and Γi),
to send data through the coupling-artefact and to ask for
safe data is neither the simulator, nor the model, nor the
coupling-artefact purpose. So we define an entity which be-
haviour will be to manage the data flows for a given model:
the model-agent. Its role is to get the data δi, the cti and
nti values from the model Mi, to send the < δi; Γi > tuples
to the output coupling-artefacts, to ask the safe data δj from
the input coupling-artefacts and to send them to Mi. The
model-agent behaviour is describe in figure 4.

In order for the model-agent to interact with the mod-
els, and in order to modify as little as possible the existing
models Mi, we define an interface that allows the model-
agent to achieve its purposes: the model-artefact. It allows
the model-agent to initialize, execute the model Mi and to
manage its input and output ports. The table 1 lists both
the coupling and model-artefacts functions.

Figure 3: Architecture overview: from concepts to
implementation

The whole architecture is described in the figure 3. It
is modular, transparent and decentralized so the simulation
can be seen as a set of distributed and reusable components.
Models are in charge of modelling. The model-agents are
in charge of executing the models. Finally, the coupling-
artefacts are in charge of the coordination process. This way,
we can easily add, remove or interchange models without
being concerned with coupling and coordination issues (see
section 4).

Figure 4: The model-agent behaviour: to manage
the simulation process.

4. PROOF OF CONCEPT
The objective of this section is to present how to build a

complex simulation as a society of interacting models. The
simulation results validation is out of the scope of this ar-
ticle. We present a proof of concept illustrated by NetLogo
[18] models co-evolution. We choose those simple models
for the sake of illustration: they are straightforward to un-
derstand and we think they highlight some of the coupling
and synchronization problems we raised in section 2. We
discussed more evolved examples in section 5.

We implement our concepts in a framework called
AA4MM1. It is coded in Java and rely upon the Java Mes-
saging Service in order to deal with shared memory pur-
poses. Since this framework, at first, has been developed in
order to build a proof of concepts and since the discussion
about implementation choices and performances is out of the
scope of this article, we do not give a lot of details about
this framework. Interested readers can find more details on
the AA4MM web page.

4.1 A sheepfold study made of sheep, grass
and wolves models co-evolution

Imagine we want to predict the impact of a sheepfold. For
example: what are the best herding strategies ? What is the
risk for a sheep to be eaten by a wolf ? etc. We want to
model an ecosystem made of wolves, sheep, shepherds and
grasslands. The first model M1 represents sheep moving
and shepherds trying to herd them. The second one M2

represents sheep2 eating grass and gaining energy. The last
one M3, is a prey predator model that represents the wolf
predation. All models are available within the Netlogo [18]
platform.

Our goal is to design the sheepfold simulation as a set of
interacting and co-evolving models. We want to couple the
three above-mentioned models using the concepts we present

1http://www.loria.fr/∼siebertj/aa4mm/
2Originally rabbits. We changed species.

512



in section 3.

4.2 Integration basic steps
At first we only consider M1 and M2. Assume we are more

preoccupied by the impact of sheep on the grasslands. We
target the addition of M3 later (section 4.4). Both specialists
of sheep model and grassland model should be able to make
their own models and simulators interact.

The first thing to do to couple different models is to define
the input and output ports of each model and the connec-
tions between them. The sheep movements are described
by the sheep model M1. That is M1 provides the set of
sheep positions SP . In order to be executed, M2 needs to
update its own local sheep positions from M1. On its part,
the sheep movement is influenced by the sheep energy SE.
Energy is provided by M2. As a consequence, M1 needs to
update its own local sheep energy values from M2. Figure 5
depicts both conceptual links between M1 and M2 and how
it is implemented.

4.2.1 Existing models integration
The second thing to do to couple different models is to

build the model-artefacts for each involved model. Each spe-
cialist have to create a model-artefact for its model. Con-
sider M1, its behaviour is given by the algorithm 1. The
model-artefact in charge of M1 must implement the func-
tions listed in table 1.

The init() function sets the number of sheep, shepherds
and their initial positions in M1. Since Netlogo processes
simulation step by step, the run() function executes one
simulation step of M1, the getCurrentTime() and getNext-
Time() returns ct1 (the number of clock ticks) and nt1 =
ct1+1. getOutputData() function returns all sheep positions
SP . setInputData() sets into M1 the sheep energy SE.

The same work is done for M2. All those functions are
implemented by simply calling procedures through the pro-
vided API. As a consequence, we do not modify the original
model. However, the simulators has to provide the men-
tioned functions (run(), init()etc.). Thus, we modify the
execution process.

Algorithm 1: Model M1 (one step)

Input: Sheep energy levels SE
Output: Sheep Positions SP
Set the sheep energy levels from SE.
foreach Shepherd B:

B moves randomly.
if B is not carrying a sheep.
then Search for a sheep.
else Find a herd to drop the sheep.

foreach Sheep S not carried:
S moves randomly.

tick ← tick + 1.
return SP

4.2.2 Coupling models
In our example, one coupling-artefact cA1 is in charge of

the sheep positions. The other one cA2 deals with sheep
energy (figure 5).

Consider cA1, its post() function allows M1 for sending
the sheep positions with their validity interval: < SP, Γ1 >.
The read() function provides safe sheep positions to M2.

We assume that both models M1 and M2 have the same
representation of the sheep positions. We will see in sec-
tion 4.3 how to deal with different scales and representa-
tion. It is worth noticing that the specialists involved in
the simulation do not have to deal with coordination issues
since the coordination model is already implemented into
the coupling-artefact.

4.2.3 Model-agent behaviour
Once the artefacts are built, the last thing to do is to build

the model-agents that will use them. One model agent is
created for each model. The generic model-agent behaviour
is presented in figure 4. In our example, agents have to
create and to initialize their own model via the proper model-
artefact functions init(). Then, they post the initial output
data (SE and SP at time 0).

The agents manage the simulation process as follows.

1. Read the input data SE (resp. SP ) from the coupling-
artefact cA2 (resp. cA1). Set them to the model one.

2. Execute the model M1 (resp. M2) (i.e call the model-
artefact run() function).

3. Get the current and next time values ct1 and nt1 (resp.
ct2 and nt2).

4. Get output data SP (resp. SE) from the model-
artefact. Post them to the coupling one cA1 (resp.
cA2).

The agents do this loop until the simulation ends.

4.2.4 Synthesis
In this section, we presented a case study in which a sim-

ulation is built from two models. Notice that those models
come from different domains, have been designed indepen-
dently and can be ran separately. We assume that the spe-
cialists of each domain wish to couple those models in order
to build a more complex simulation. In order to make those
models interact they need to deal with issues such as cou-
pling, coordination and model execution. However, they are
not familiar with distributed simulations and coordination
process.

The aim of our framework is to facilitate the creation of
this simulation by making the coupling and coordination is-
sues transparent. When the specialists need to couple mod-
els, they need to define the data flows between them and to
implement a coupling-artefact for each link. They do not
have to care about the synchronization process since the co-
ordination model is already implemented into the coupling-
artefacts and the exchanged data. A model-artefact has to
be created for each model to interface. There are six func-
tions to implement (see table 1). We rely upon the work in
[19] in order to define and make these functions as generic as
possible, anyway existing models may be adapted in order
to match them. In the next sections, we show that, having
done these simple modifications, it is straightforward to add
or interchange models and also to deal with the interaction
of models designed in different scales.

4.3 Dealing with scales differences
Until now, we have assumed that time and space scales in

both models M1 and M2 were the same. In the reality, spe-
cialists design their models independently. Most of the time,

513



Figure 5: Coupling sheep and grass models from the
conceptual view to the implementation

the models scales are different. For example, the grassland
specialists are interested into how fields evolve each season
although sheep specialists are more concerned with how the
sheep population evolves each week.

As a consequence, the time and space scales in both mod-
els M1 and M2 are not similar. This firstly causes coherence
and compatibility issues (see section 2). For example data
such as positions in model M1 do not correspond to posi-
tions in model M2. Secondly, models executions are differ-
ent. E.g., when the model M2 computes the fields evolution
from winter to spring, the model M1 needs to compute the
sheep population evolution for the 12 corresponding weeks.
Although M2 processes one single simulation event, M1 pro-
cesses 12 of them. So the models need to be coordinate.

In the next sections, we present how to make models with
different scales interact through our framework.

4.3.1 Different space scales
Consider that one patch of grass correspond to a square of

2× 2 patches in the sheep model M1 (see figure 6). Since it
is not possible to change the patches size in the grass model
M2, sheep positions produced by M1 does not fit anymore
with space in M2. As a consequence, we need to add an
operation in the coupling-artefact cA1 when the grass model-
agent reads the sheep positions. This operation consists in
dividing each sheep position coordinates by a factor 2.

Figure 6: Sheep and grass models spaces correspon-
dence

Note that we target a challenge due to the exchanged data
coherence. We only modify the entity in charge of that issue:
the coupling-artefact.

4.3.2 Different time scales
The same way, consider that the grass model M2 may

no longer be executed step by step but 2 steps by 2 steps;
while the sheep model execution remains step by step (see
figure 7). This is related to the model M2 execution pro-
cess. So we modify the related model-artefacts functions
run() and getNextTime(). That is, instead of executing
only one simulation step, the run() function executes two
simulation steps. Then the getNextTime() function returns
nt2 = ct2 + 2. Since the coordination occurs only thanks to
time values given by getCurrentTime() and getNextTime()
functions, these are the only modifications to make.

Figure 7: Sheep and grass models execution time
correspondence

4.4 Adding, or exchanging models
In this section, we present the advantages to consider

model as component and the simulation as a distributed
set of interacting models.

4.4.1 Simple addition
The sheep and grass specialists involved in the sheepfold

simulation wish to predict the impact of wolves living in the
neighbourhood. As a consequence, a new model M3 should
be added in the simulation. The challenge is to couple a
new model to the previous ones without rebuilding the whole
simulation (see figure 8).

The first thing to do is to define the new links between
three the models. The specialists have to know which data
are exchanged between M1, M2 and M3. Two cases are
possible. Either the exchanged data are the same as those
existing or they bring into play new ones. On the one hand,
we can reuse the existing coupling-artefacts. On the other
hand, we need to create new coupling-artefacts (as described
in section 4.2).

Consider M3, this models defines the wolf predation dy-
namics: wolves move, catch a sheep and took energy from
the sheep (as they eat them). This way, M3 needs to update
its own local sheep position values from M1 and M3 provides
negative sheep energy values SE3 when they eat the sheep.
The links between the models are described in figure 8. Since
they do not require some new data to exchange, we can reuse
the existing coupling-artefacts cA1 and cA2.

Since it is already present, M3 can ask the coupling-
artefact cA1 to give it the sheep positions SP from M1.
The only thing to do is to add an operation to cA1 in order
for M3 to read that value. However, when M1 ask cA2 to
give it the sheep energy values, it has to take into account
both the positive values SE2 given by the grass model M2

and the negative values SE3 given by the wolf model M3.
That is, we need to define a new operation in cA2 in order
to combine both energy levels. In our case, for a given sheep
energy level, cA2 needs to add the energy gain SE2 and the
energy loss SE3. This way M1 updates a single sheep energy
value for each sheep.

4.4.2 A (little bit) more complicated addition

514



Figure 8: Addition of a third model

As we saw in section 4.3, M1, M2 and M3 may have been
designed independently and, as a consequence, scales in each
model may be different. For example, the grassland model
represents fields evolution for each season, the sheep model
represents the sheep population evolution for each week and
the wolves model represents the wolf predation techniques
for each day. Assume that we couple the three model as in
figure 8.

There is no need to care about coordination since the co-
ordination model is already implemented into the coupling-
artefacts and the exchanged data. The only modifications
to make concern the run() and getNextTime() functions as
in section 4.3.2.

In our example, the coupling-artefact cA1 needs to provide
sheep positions from M1 to both models M2 and M3. Since
the sheep positions in these models are different, cA1 need
an operation to translate sheep positions from M1 to M2

(as in section 4.3.1) and, in the same way, another one that
translate sheep positions from M1 to M3.

Note that, since the coupling-artefacts store the data sent
by the model-agents it is possible to define as many oper-
ations as needed in order to deal with the coupling issues
(see section 2). As a conclusion, if works from sections 4.3
and 4.4.1 have already been done, no more modifications are
needed in order to build the new coupling scheme.

4.4.3 Interchange
After some measurements, one may find that a model is

not accurate enough and that another one should be better.
In order to interchange models, the simulation designers sim-
ply need to check that they will have the same input and
output ports. For example, in M1, instead of moving ran-
domly, the sheep can move accordingly to a flocking model

(as [7]). Instead of rewriting a new model, we can simply
replace M1 by an existing flocking model M ′

1 that have the
same input and output ports. This way, we do not change
the model-agents nor the coupling-artefacts. We only need
to build a model-artefact for the new model M ′

1 (see figure
9).

Figure 9: Interchanging models

4.4.4 Building new simulations
Imagine now that we are more interested in reintroducing

wolves into the wild than in the sheep industry. However, we
want to reuse the existing models and results we previously
obtained. That is, we want to build new simulations from
the same building blocks. In addition, new models may be
needed. In order to build this simulation, we do not have to
rewrite neither all the models, nor the coordination process.
We only have to take the building blocks and to link them
properly. This is one of the advantages to see simulation as
a set of interacting and co-evolving models, and to have the
concepts that allows to easily implement it.

Indeed, it is worth noticing that none of the model-agent
needs to know each other, neither they know which reads the
data they post. This simplifies the addition, the removal
or the interchange of the models. The important thing is
to check the dependencies between the models. That is,
the interacting models should have the right input and out-
put ports. Then, it is straightforward to implement new
coupling-artefacts, to reuse the existing ones and to link
them with the proper model-agents.

5. CONCLUSION

5.1 Summary
In this article, we present an architecture to build simu-

lations as a society of interacting and co-evolving models.
It is based upon the A&A paradigm. We also propose an
objective coordination model with decentralized models ex-
ecution. Our concepts facilitate the building of such simu-
lations since it makes the coupling and coordination issues
transparent for the users. This way, people involved into
the simulation design only have to care about modelling and
about the data flows between models.

The architecture we propose is modular and decentralized
so that any model could be added, removed or interchanged
with as little modifications as possible. We have developed a
formal coordination model and proved that synchronization
happens without deadlocks for a number of simulators k ∈

515



N. We implemented our concepts in order to build a proof
of concept illustrated by several examples.

5.2 Discussion and future directions
In this article, we have made the assumption that the

complex system studied is divided into several abstraction
levels. One may want a geographical division where the
subsystems may represent different geographical subparts.
As a consequence, entities can enter, leave the models or
go from a model to another. This point of view raises new
modelling and coupling challenges. We think the concepts
presented in this article can help to solve these new issues.

We use this framework on an ongoing work on co-evolution
of mobile ad hoc networks and social models. We then
couple an event-based simulator (network model) with a
step-by-step simulator (agent based model). It is part of
a french ANR research project. We plan to use some of
the experiments to improve and study the implementation
performances.

Although the examples presented are quite simple and
broadly compatible (both discrete event), we think that with
the concept presented here we can be used to couple equation
based models (EBM) with agent based ones. Technically, we
need to resolve (or run()) EBM for time intervals instead of
events or steps. It is possible to go from the micro scale to
the macro one by using operations (as defined in section 2)
such as sums, means or distributions, etc. ; the other way
round by, for example, introducing randomness. Discrete
event formalism and the work in [19] should be a good line
of thinking in order to look further.

Another open issue would be in the validation process of
co-evolution. One question that arise is the following: do
several independent and valid models give valid results when
coupled together ? We think that this question is domain
related and that complex simulations have to be done and
compared to real measurement in order to answer this issue.

Acknowledgements
The authors would like to thanks ANR SARAH project and
La Région Lorraine for their financial support, Joris Rehm3

and Virginie Galtier-Ciarletta4 for their collaboration.

6. REFERENCES
[1] S. Bonneaud, P. Redou, and P. Chevaillier. Pattern

oriented agent-based multi-modeling of exploited
ecosystems. In 6th EUROSIM congress on modelling
and simulation, september 9-13 2007.

[2] R. M. Fujimoto. Parallel simulation: parallel and
distributed simulation systems. In WSC ’01:
Proceedings of the 33nd conference on Winter
simulation, pages 147–157, Washington, DC, USA,
2001. IEEE Computer Society.

[3] J. Himmelspach and A. M. Uhrmacher. Plug’n
simulate. In ANSS ’07: Proceedings of the 40th
Annual Simulation Symposium, pages 137–143,
Washington, DC, USA, 2007. IEEE Computer Society.

[4] J. A. Joines and S. D. Roberts. Fundamentals of
object-oriented simulation. In WSC ’98: Proceedings
of the 30th conference on Winter simulation, pages

3joris.rehm@loria.fr; MOSEL Team, LORIA.
4virginie.galtier@supelec.fr; Supelec Metz.

141–150, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

[5] F. Kuhl, R. Weatherly, and J. Dahmann. Creating
computer simulation systems: an introduction to the
high level architecture. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1999.

[6] G. Quesnel, R. Duboz, D. Versmisse, and E. Ramat.
The virtual laboratory environment: A multimodelling
and simulation framework. In Transactions on
Modeling and Computer Simulation. ACM, 2009.

[7] C. W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. In Computer Graphics,
pages 25–34, 1987.

[8] A. Ricci, M. Viroli, and A. Omicini. Give agents their
artifacts: the a&a approach for engineering working
environments in mas. In AAMAS ’07: Proceedings of
the 6th international joint conference on Autonomous
agents and multiagent systems, pages 1–3, New York,
NY, USA, 2007. ACM.

[9] G. F. Riley, M. H. Ammar, R. M. Fujimoto, A. Park,
K. Perumalla, and D. Xu. A federated approach to
distributed network simulation. ACM Trans. Model.
Comput. Simul., 14(2):116–148, 2004.

[10] M. Rupert, A. Rattrout, and S. Hassas. The web from
a complex adaptive systems perspective. J. Comput.
Syst. Sci., 74(2):133–145, 2008.

[11] M. Schumacher. Objective coordination in multi-agent
system engineering: design and implementation.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2001.

[12] J. Siebert, L. Ciarletta, and V. Chevrier. De l’intérêt
du couplage de modèles pour appréhender les
interactions utilisateurs-réseaux dynamiques. Revue
d’Intelligence Artificielle, 2009.

[13] J. Siebert, L. Ciarletta, and V. Chevrier. Agents &
artefacts for multiple models coordination. In 25th
Symposium On Applied Computing, 2010.

[14] J. Siebert, J. Rehm, V. Chevrier, L. Ciarletta, and
D. Mery. Aa4mm coordination model: event-b
specification. Technical report, INRIA, 2009.

[15] J. Southern, J. Pitt-Francis, J. Whiteley, D. Stokeley,
H. Kobashi, R. Nobes, Y. Kadooka, and D. Gavaghan.
Multi-scale computational modelling in biology and
physiology. Progress in Biophysics and Molecular
Biology, (96), 2008.

[16] H. Van Dyke Parunak, S. Brueckner, and J. Sauter.
Digital pheromone mechanisms for coordination of
unmanned vehicles. In AAMAS ’02: Proceedings of the
first international joint conference on Autonomous
agents and multiagent systems, pages 449–450, New
York, NY, USA, 2002. ACM.

[17] H. Van Dyke Parunak, R. Savit, and R. L. Riolo.
Agent-based modeling vs. equation-based modeling: A
case study and users’ guide. In MABS, pages 10–25,
1998.

[18] U. Wilensky. Netlogo, 1999. Center for Connected
Learning and Computer-Based Modeling,
Northwestern University. Evanston, IL.

[19] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation. Academic Press, January
2000.

516


